Models
Regression model
- class models.RegressionModels.RegressionModels(H_REFINEMENTS: int = 0)
Bases:
object
Base class for regression models.
- POD(R_velocity=None, R_pressure=None, scaled=True, testdata=False) Tuple[ndarray, ndarray]
Perform Proper Orthogonal Decomposition (POD) on the velocity and pressure fields.
If R_velocity or R_pressure is None, the elbow point is used.
- Parameters:
R_velocity (int, optional) – Number of modes for the velocity field, by default None
R_pressure (int, optional) – Number of modes for the pressure field, by default None
scaled (bool, optional) – Use scaled data, by default True
testdata (bool, optional) – Use test data, by default True
- Returns:
Reduced matrices for the velocity and pressure fields
- Return type:
(np.ndarray, np.ndarray)
- calculate_error_samples(metric, predict_velocity: ndarray, predict_pressure: ndarray) Tuple[ndarray, ndarray]
Calculates the error per sample using the specified metric.
- Parameters:
metric (Predefined function) – Metric to calculate the error
predict_velocity (np.ndarray) – Predicted velocity data
predict_pressure (np.ndarray) – Predicted pressure data
- Returns:
Error per sample for the velocity and pressure fields
- Return type:
Tuple[np.ndarray, np.ndarray]
- elbow_point(scaled=True) Tuple[int, int]
Returns the elbow point for the singular values of the velocity and pressure fields.
- Parameters:
scaled (bool, optional) – Use scaled data, by default True
- Returns:
Elbow point for the velocity and pressure fields
- Return type:
(int, int)
- inverse_scale_(data_velocity: ndarray, data_pressure: ndarray) Tuple[ndarray, ndarray]
Inverse scales the data using the trained scalers.
- Parameters:
data_velocity (np.ndarray) – Velocity data
data_pressure (np.ndarray) – Pressure data
- Returns:
Inverse scaled velocity and pressure data
- Return type:
Tuple[np.ndarray, np.ndarray]
- load_model(model_velocity_file='RegressionModel_velocity.pkl', model_pressure_file='RegressionModel_pressure.pkl') Tuple
Loads the trained models from the specified files.
- Parameters:
model_velocity_file (str, optional) – File name for the velocity model, by default ‘RegressionModel_velocity.pkl’
model_pressure_file (str, optional) – File name for the pressure model, by default ‘RegressionModel_pressure.pkl’
- Returns:
Trained models for the velocity and pressure fields
- Return type:
Tuple
- mae_test(model_velocity, model_pressure, axis='full')
Calculates the Mean Absolute Error (MAE) for the test data.
- mape_test(model_velocity, model_pressure, axis='full')
Calculates the Mean Absolute Percentage Error (MAPE) for the test data.
- max_error_test(model_velocity, model_pressure, axis='full')
Calculates the Maximum Error for the test data.
- predict_test(model_velocity, model_pressure, rescale=True) Tuple[ndarray, ndarray]
Predicts the velocity and pressure fields for the test data.
- Parameters:
model_velocity (Trained model for the velocity field)
model_pressure (Trained model for the pressure field)
rescale (bool, optional) – Rescale the data, by default True
- Returns:
Predicted velocity and pressure fields
- Return type:
Tuple[np.ndarray, np.ndarray]
- relative_norm(model_velocity, model_pressure, ord=2)
Calculates the relative norm for the test data.
- rmse_test(model_velocity, model_pressure, axis='full')
Calculates the Root Mean Squared Error (RMSE) for the test data.
- save_model(model_velocity, model_pressure, model_velocity_file='RegressionModel_velocity.pkl', model_pressure_file='RegressionModel_pressure.pkl')
Saves the trained models to the specified files.
- Parameters:
model_velocity (Trained model for the velocity field)
model_pressure (Trained model for the pressure field)
model_velocity_file (str, optional) – File name for the velocity model, by default ‘RegressionModel_velocity.pkl’
model_pressure_file (str, optional) – File name for the pressure model, by default ‘RegressionModel_pressure.pkl’
- scale_(data_velocity: ndarray, data_pressure: ndarray) Tuple[ndarray, ndarray]
Scales the data using the trained scalers.
- Parameters:
data_velocity (np.ndarray) – Velocity data
data_pressure (np.ndarray) – Pressure data
- Returns:
Scaled velocity and pressure data
- Return type:
Tuple[np.ndarray, np.ndarray]
- singular_values(scaled=True) Tuple[ndarray, ndarray]
Returns the singular values for the velocity and pressure fields.
- Parameters:
scaled (bool, optional) – Use scaled data, by default True
- Returns:
Singular values for the velocity and pressure fields
- Return type:
(np.ndarray, np.ndarray)
- class models.LinearRegression.LinearRegressionModel(H_REFINEMENTS: int = 0)
Bases:
RegressionModels
Trains a Linear Regression model for the velocity and pressure fields.
- train(X_r_velocity: ndarray, X_r_pressure: ndarray)
Trains the Linear Regression model for the velocity and pressure fields (each).
- Parameters:
X_r_velocity (np.ndarray) – Velocity data
X_r_pressure (np.ndarray) – Pressure data
- Returns:
Trained models for the velocity and pressure fields
- Return type:
(LinearRegression, LinearRegression)
- class models.GaussianProcessRegressor.GaussianProcessRegressionModel(H_REFINEMENTS: int = 0)
Bases:
RegressionModels
Trains a Gaussian Process Regression model for the velocity and pressure fields.
- load_model(model_velocity_file='GaussianRegressionModel_velocity.pkl', model_pressure_file='GaussianRegressionModel_pressure.pkl')
Loads the trained models from the specified files.
- save_model(model_velocity, model_pressure, model_velocity_file='GaussianRegressionModel_velocity.pkl', model_pressure_file='GaussianRegressionModel_pressure.pkl')
Saves the trained models to the specified files.
- train(X_r_velocity: ndarray, X_r_pressure: ndarray, kernel=DotProduct(sigma_0=1) + WhiteKernel(noise_level=1))
Trains the Gaussian Process Regression model for the velocity and pressure fields (each).
- Parameters:
X_r_velocity (np.ndarray) – Velocity data
X_r_pressure (np.ndarray) – Pressure data
kernel (sklearn.guassian_process.kernels, optional) – Kernel for the Gaussian Process Regression model, by default DotProduct() + WhiteKernel()
- Returns:
Trained models for the velocity and pressure fields
- Return type:
(GaussianProcessRegressor, GaussianProcessRegressor)
- class models.RBFInterpolator.RadialBasisRegressionModel(H_REFINEMENTS: int = 0)
Bases:
RegressionModels
Trains a Radial Basis Function Interpolator model for the velocity and pressure fields.
- load_model(model_velocity_file='radialBasisModel_velocity.pkl', model_pressure_file='radialBasisModel_pressure.pkl')
Loads the trained models from the specified files.
- predict_test(model_velocity, model_pressure, rescale=True)
Predicts the velocity and pressure fields for the test data.
- Parameters:
model_velocity (RBFInterpolator) – Trained model for the velocity field
model_pressure (RBFInterpolator) – Trained model for the pressure field
rescale (bool, optional) – Rescale the data, by default True
- Returns:
Predicted velocity and pressure fields
- Return type:
(np.ndarray, np.ndarray)
- save_model(model_velocity, model_pressure, model_velocity_file='LinearRegressionModel_velocity.pkl', model_pressure_file='LinearRegressionModel_pressure.pkl')
Saves the trained models to the specified files.
- train(X_r_velocity: ndarray, X_r_pressure: ndarray, kernel: str = 'multiquadric', epsilon: float = 1)
Trains the Radial Basis Function Interpolator model for the velocity and pressure fields (each).
- Parameters:
X_r_velocity (np.ndarray) – Velocity data
X_r_pressure (np.ndarray) – Pressure data
kernel (str, optional) – Kernel for the RBFInterpolator model, by default ‘multiquadric’
epsilon (float, optional) – Epsilon for the RBFInterpolator model, by default 1
- Returns:
Trained models for the velocity and pressure fields
- Return type:
(RBFInterpolator, RBFInterpolator)
- class models.ANN.ANN(H_REFINEMENTS: int = 0)
Bases:
RegressionModels
Class for training an Artificial Neural Network (ANN) model for the velocity and pressure fields.
- train(X_r_velocity: ~numpy.ndarray, X_r_pressure: ~numpy.ndarray, epochs: int = 10000, batch_size: int = 32, plot_learning: bool = True) -> (<class 'keras.src.models.sequential.Sequential'>, <class 'keras.src.models.sequential.Sequential'>)
Trains the ANN model for the velocity and pressure fields.
Builds the models and trains them (preferably on a GPU). Separate models are built for the velocity and pressure fields.
- Parameters:
X_r_velocity (np.ndarray) – Velocity data
X_r_pressure (np.ndarray) – Pressure data
epochs (int, optional) – Number of epochs, by default 10_000
batch_size (int, optional) – Batch size, by default 32
plot_learning (bool, optional) – Plot the learning curves, by default True
- Returns:
Trained models for the velocity and pressure fields
- Return type:
(tf.keras.models.Sequential, tf.keras.models.Sequential)